МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Пензенский государственный университет» (ПГУ)

С. Ю. Киреев, С. Н. Киреева

Основы электрохимических процессов. Сборник задач и упражнений

Учебно-методическое пособие

Пенза Издательство ПГУ 2022

Рецензент

кандидат технических наук, доцент, заведующий кафедрой «Защита в чрезвычайных ситуациях» Пензенского казачьего института технологий, филиал МГУТУ имени К. Г. Разумовского (Первый казачий университет) О. С. Виноградов

Киреев, Сергей Юрьевич.

К38 Основы электрохимических процессов. Сборник задач и упражнений: учеб.-метод. пособие / Киреев С. Ю., Киреева С. Н. – Пенза: Изд-во ПГУ, 2022. – 36 с.

Приведены задачи и упражнения по темам раздела «Основы электрохимических процессов», изучаемого в рамках дисциплины «Физическая химия». По каждой теме приводятся примеры решения задач и упражнений.

Издание подготовлено на кафедре «Химия» ПГУ и предназначено для обучающихся по направлению подготовки 18.03.01 «Химическая технология».

УДК 541.1(076.5)

[©] Пензенский государственный университет, 2022

Введение

На современном уровне развития машиностроения и приборостроения существенная роль отводится электрохимическим технологиям, которые нашли самое широкое применение во всех отраслях: энергетике, металлургии, производстве химических товарных продуктов, изделий и инструмента.

В основе всех электрохимических технологий лежат электрохимические процессы в электрохимических системах на границах электродэлектролит (межфазных границах). Они характеризуются, как и другие химические процессы, термодинамическими и кинетическими параметрами.

В настоящем учебно-методическом пособии рассматриваются задачи и упражнения из таких разделов, как:

- электропроводность растворов сильных и слабых электролитов, зависимость электропроводности от концентрации электролита в растворе;
- электродные потенциалы, зависимость электродных потенциалов и ЭДС от природы вещества, температуры, рН и концентрации потенциалопределяющих веществ;
 - законы Фарадея;
 - качественные и количественные показатели коррозии.

Электропроводность растворов электролитов

Примеры решения задач

Пример 1. Удельная электропроводность 0,135 моль/л раствора пропановой кислоты C_2H_5COOH равна 4,79 10^{-2} См/м. Рассчитать эквивалентную электропроводность раствора, константу диссоциации кислоты и рН раствора, если предельные подвижности Н+ и С2Н5СОО- равны $349.8 \text{ См} \cdot \text{см}^2/\text{моль и } 37.2 \text{ См} \cdot \text{см}^2/\text{моль соответственно}.$

Решение.

$$\lambda_0 = 349.8 + 37.2 = 387.0 \text{ Cm} \cdot \text{cm}^2/\text{моль}.$$
 $\lambda = \frac{1000 \text{ k}}{C} = 4.79 \cdot 10^{-2} \text{ Cm} \cdot \text{m}^{-1} / 0.135 \text{ моль} \cdot \text{л}^{-1} \cdot 1000 =$
 $= 3.55 \text{ Cm} \cdot \text{cm}^2 \cdot \text{моль}^{-1}.$
 $\alpha = \frac{\lambda}{\lambda_0} = 3.55 / 387.0 = 0.009 (0.9 \%).$
 $K = \frac{\alpha^2 C}{1 - \alpha} = \frac{0.009^2 \cdot 0.135}{1 - 0.009} = 1.15 \cdot 10^{-5} \text{ (моль} \cdot \text{л}^{-1}).$
 $\left[H^+\right] = \alpha \cdot C = 1.24 \cdot 10^{-3} \text{ (моль} \cdot \text{л}^{-1}).$
 $pH = -lg[H^+] = 2.91.$
 $Omeom: \lambda = 3.55 \text{ Cm} \cdot \text{cm}^2 \cdot \text{моль}^{-1}; \alpha = 0.009; K = 1.15 \cdot 10^{-5} \text{ моль} \cdot \text{л}^{-1};$
 2.91

pH = 2.91.

Пример 2. Удельная электропроводность насыщенного раствора Ва ${
m CO_3}$ в воде при 18 °C равна 25,475· 10^{-4} См·м $^{-1}$. Удельная электропроводность воды $-4,5\cdot 10^{-5}$ См·м $^{-1}$. Подвижности ионов $\mathrm{Ba^{2+}}$ и $\mathrm{CO_3^{2-}}$ при 18 °C равны соответственно 55 и 66 См·см²·г-экв⁻¹. Рассчитать растворимость BaCO₃ в воде при 18 °C в моль л⁻¹, считая соль полностью диссоциированной, а подвижности ионов равными подвижностям при бесконечном разведении.

Решение.

$$\begin{split} &\kappa(\mathrm{BaCO_3}) = \kappa_{\mathrm{(p-pa)}} - \kappa_{\mathrm{(H_2O)}} = 25,475\cdot 10^{-4} - 4,5\cdot 10^{-5} = \\ &= 25,025\cdot 10^{-4}~\mathrm{Cm\cdot m^{-1}}.\\ &\lambda_0(\mathrm{BaCO_3}) = ~\lambda_0(\mathrm{Ba^{2+}}) + \lambda_0(\mathrm{CO_3^{2-}}) = \\ &= 55 + 66 = 121~\mathrm{Cm\cdot cm^2\cdot r\text{-}9kB^{-1}} = 1,21\cdot 10^{-2}~\mathrm{Cm\cdot m^2\cdot r\text{-}9kB^{-1}}.\\ &C = \frac{\kappa}{\lambda_0} = 0,206~\mathrm{r\text{-}9kB\cdot m^{-3}} = 2,06\cdot 10^{-4}~\mathrm{r\text{-}9kB\cdot m^{-1}} = 1,03\cdot 10^{-4}~\mathrm{mojh\cdot m^{-1}}.\\ &Omsem:~C = 1,03\cdot 10^{-4}~\mathrm{mojh\cdot m^{-1}}. \end{split}$$

Пример 3. Удельная электропроводность 5 % раствора $Mg(NO_3)_2$ при 18 °C равна 4,38 См·м⁻¹, а его плотность — 1,038 г·см⁻³. Рассчитать эквивалентную электропроводность раствора и кажущуюся степень диссоциации соли в растворе. Подвижности ионов Mg^{2+} и NO_3^- при 18 °C равны соответственно 44,6 и 62,6 См·см²·г-экв⁻¹.

Решение.

$$C = \frac{\omega \cdot \rho}{M_{(\mathrm{Mg(NO_3)_2})}} = \frac{0.05 \cdot 1.038 \ \Gamma/\mathrm{cm}^3}{148 \ \Gamma/\mathrm{моль}} \cdot 1000 \ \mathrm{cm}^3/\mathrm{J} = 0.35 \ \mathrm{моль} \cdot \mathrm{J}^{-1} = 0.70 \ \Gamma-\mathrm{9KB} \cdot \mathrm{J}^{-1}.$$

$$\lambda = \frac{\kappa}{1000C} = \frac{4.38}{0.70 \cdot 1000} = 6.25 \cdot 10^{-3} \ \mathrm{Cm} \cdot \mathrm{m}^2 \cdot \mathrm{f} - \mathrm{9KB}^{-1} = 0.000 \ \mathrm{cm}^3/\mathrm{J} = 0.000 \ \mathrm{cm}^3/\mathrm{J} = 0.000 \ \mathrm{J} = 0.0000 \ \mathrm{J} = 0.0000 \ \mathrm{J} = 0.0000 \$$

Задачи

- **1.** Рассчитать удельную электропроводность абсолютно чистой воды при 25 °C. Ионное произведение воды при 25 °C равно 1,00·10⁻¹⁴.
- **2**. Удельная электропроводность бесконечно разбавленных растворов KCl, KNO₃ и AgNO₃ при 25 °C равна соответственно 149,9, 145,0 и 133,4 См·м²·моль⁻¹. Какова удельная электропроводность бесконечно разбавленного раствора AgCl при 25 °C?
- **3.** Удельная электропроводность бесконечно разбавленных растворов соляной кислоты, хлорида натрия и ацетата натрия при 25 °C равна соответственно 425,0, 128,1 и 91,0 $\text{См} \cdot \text{м}^2 \cdot \text{моль}^{-1}$. Какова удельная электропроводность бесконечно разбавленного раствора уксусной кислоты при 25 °C?
- **4.** Удельная электропроводность 4 % водного раствора H_2SO_4 при 18 °C равна 0,168 См·см⁻¹, плотность раствора 1,026 г·см⁻³. Рассчитать эквивалентную электропроводность раствора.
- **5.** Удельная электропроводность насыщенного раствора AgCl в воде при 25 °C равна $2.28 \cdot 10^{-4}$ См·м⁻¹, а удельная электропроводность воды

- $1,16\cdot 10^{-4}~{\rm Cm}\cdot {\rm m}^{-1}$. Рассчитать растворимость AgCl в воде при 25 °C в моль $\cdot {\rm n}^{-1}$.
- **6.** Какую долю общего тока переносит ион Li⁺ в водном растворе LiBr при 25 °C?
- 7. Рассчитать число переноса H^+ в растворе HCl с концентрацией $1 \cdot 10^{-3}$ моль $\cdot \pi^{-1}$. Каково будет число переноса H^+ , если к этому раствору добавить NaCl, чтобы его концентрация была равна 1,0 моль $\cdot \pi^{-1}$?
- **8.** Рассчитать скорость движения иона Rb⁺ в водном растворе при 25 °C, если разность потенциалов 35 В приложена к электродам, находящимся на расстоянии 0,8 см друг от друга.
- **9.** Рассчитать скорость движения иона Na⁺ в водном растворе при 25 °C, если разность потенциалов 10 В приложена к электродам, находящимся на расстоянии 1 см друг от друга. Сколько времени понадобится иону, чтобы пройти расстояние от одного электрода до другого?
- **10.** Удельная электропроводность водного раствора KI равна $89,00~{\rm Cm\cdot m^{-1}}$, а раствора KCl той же концентрации $186,53~{\rm Cm\cdot m^{-1}}$. Удельная электропроводность раствора, содержащего обе соли, равна $98,45~{\rm Cm\cdot m^{-1}}$. Рассчитать долю KCl в растворе.
- **11.** Удельная электропроводность водного раствора сильного электролита при 25 °C равна 109,9 $\text{Cm}\cdot\text{cm}^2\cdot\text{моль}^{-1}$ при концентрации $6.2\cdot10^{-3}$ моль·л⁻¹ и 106,1 $\text{Cm}\cdot\text{cm}^2\cdot\text{моль}^{-1}$ при концентрации $1.5\cdot10^{-2}$ моль·л⁻¹. Какова удельная электропроводность раствора при бесконечном разбавлении?
- **12.** Константа диссоциации гидроксида аммония равна $1,79 \cdot 10^{-5}$ моль \cdot л⁻¹. Рассчитать концентрацию NH₄OH, при которой степень диссоциации равна 0,01, и эквивалентную электропроводность раствора при этой концентрации.
- **13.** Эквивалентная электропроводность $1,59 \cdot 10^{-4}$ моль \cdot л⁻¹ раствора уксусной кислоты при 25 °C равна 12,77 См \cdot см² · моль -1. Рассчитать константу диссоциации кислоты и рН раствора.
- **14.** Константа диссоциации масляной кислоты C_3H_7COOH равна $1,74\cdot10^{-5}$ моль· π^{-1} . Эквивалентная электропроводность раствора при разведении $1024~\pi\cdot\text{моль}^{-1}$ равна $41,3~\text{См}\cdot\text{см}^2\cdot\text{моль}^{-1}$. Рассчитать степень диссоциации кислоты и концентрацию ионов водорода в этом растворе, а также эквивалентную электропроводность раствора при бесконечном разведении.

Электропроводность растворов слабых электролитов

Электрическая проводимость растворов

Удельная электропроводность (κ) есть величина обратная удельному электрическому сопротивлению (ρ):

$$\kappa = \frac{1}{\rho}$$
.

Размерность удельной электропроводности — Cm/m или Om^{-1} m^{-1} . Молярная электропроводность раствора определяется уравнением вида

$$\lambda = \kappa / c1000 = \kappa V / 1000,$$

где c — концентрация растворенного вещества моль/л; V = 1/c (V — разведение). Размерность молярной электропроводности — м² Ом⁻¹ моль⁻¹.

Для слабодиссоциированного электролита, согласно закону разведения Оствальда, между его константой диссоциации $K_{\rm дисc}$ и молярной электропроводностью имеется зависимость вида

$$K_{\text{TMCC}} = \lambda^2 c / \lambda_o (\lambda_o - \lambda),$$

где λ_o – молярная электропроводность при бесконечном разведении.

Последнее уравнение после несложных преобразований можно свести к линейному виду

$$1/\lambda = 1/\lambda_o + \lambda c/K_{\text{ducc}}(\lambda_o)^2$$
.

Прямая, построенная в координатах $1/\lambda = f(\lambda c)$, дает возможность определить величину $1/\lambda_{\rm o}$ посредством экстраполяции ее на ось ординат $1/\lambda_{\rm o}$, а по тангенсу угла наклона прямой вычислить значение $1/K_{\rm nucc}(\lambda_{\rm o})^2$ и, следовательно, зная $\lambda_{\rm o}$, определить $K_{\rm nucc}$.

Диссоциация растворенного вещества является процессом равновесным, т.е. со временем устанавливается так называемое ионное равновесие между непродиссоциированными молекулами и образовавшимися ионами. Для сильно разбавленных растворов с концентрацией ниже 0,01н ионное равновесие можно характеризовать концентрационной константой равновесия Kc, но с ростом количества электролита в растворе Kc перестает быть постоянной величиной и начинает изменяться с ростом

концентрации, поэтому для точного расчета ионного равновесия необходимо использовать константу равновесия, выраженную через активности.

Рассмотрим пример диссоциации циановодородной (синильной) кислоты в воде (раствор, разбавленный с концентрацией более 0,01н). Со временем устанавливается ионное равновесие между непродиссоциировавшими молекулами и ионами:

$$HCN + H_2O \rightleftharpoons H_3O^+ + CN^-$$

Константа равновесия, согласно закону действующих масс, равна

$$Ka = \frac{a_{\text{H}_3\text{O}^+} \cdot a_{\text{CN}^-}}{a_{\text{HCN}} \cdot a_{\text{H}_2\text{O}}}.$$

Значение величины Ka зависит от температуры раствора. Так как раствор разбавленный, то количество растворителя (воды) намного больше слабого электролита — синильной кислоты. Тогда можно считать, что $a_{\rm H_2O}$ = const . Ее можно внести под знак константы:

$$K_{\text{дисс}}(\text{HCN}) = Ka \cdot a_{\text{H}_2\text{O}} = \frac{a_{\text{H}_3\text{O}^+} \cdot a_{\text{CN}^-}}{a_{\text{HCN}}},$$

где $K_{\text{дисс}}(\text{HCN})$ — термодинамическая константа диссоциации. Данная величина применяется для описания реальных растворов, зависит от температуры и не зависит от концентрации.

В растворе циановодородной кислоты вода является одновременно растворителем и слабым электролитом:

$$\begin{split} \mathbf{H}_2 \mathbf{O} + \mathbf{H}_2 \mathbf{O} & \Longrightarrow \mathbf{H}_3 \mathbf{O}^+ + \mathbf{O} \mathbf{H}^- \\ Ka &= \frac{a_{\mathbf{H}_3 \mathbf{O}^+} \cdot a_{\mathbf{O} \mathbf{H}^-}}{a_{\mathbf{H}_2 \mathbf{O}}^2}, \\ K_{\mathrm{дисс}} (\mathbf{H}_2 \mathbf{O}) &= Ka \cdot a_{\mathbf{H}_2 \mathbf{O}} = \frac{a_{\mathbf{H}_3 \mathbf{O}^+} \cdot a_{\mathbf{O} \mathbf{H}^-}}{a_{\mathbf{H}_2 \mathbf{O}}}, \\ K_W &= K_{\mathrm{дисc}} (\mathbf{H}_2 \mathbf{O}) \cdot a_{\mathbf{H}_2 \mathbf{O}} = a_{\mathbf{H}_3 \mathbf{O}^+} \cdot a_{\mathbf{O} \mathbf{H}^-}, \end{split}$$

где K_W – ионное произведение воды ($K_W = 10^{-14}$). Величина K_W зависит от температуры.

Учитывая, что $a = \gamma C$ (γ — коэффициент активности), выражение для $K_{\text{лисс}}(\text{HCN})$ запишется следующим образом:

$$K_{\text{дисс}}(\text{HCN}) = \frac{C_{\text{H}_{3}\text{O}^{+}} \cdot C_{\text{CN}^{-}}}{C_{\text{HCN}}} \cdot \frac{\gamma_{\text{H}_{3}\text{O}^{+}} \cdot \gamma_{\text{CN}^{-}}}{\gamma_{\text{HCN}}},$$

$$\frac{C_{\text{H}_{3}\text{O}^{+}} \cdot C_{\text{CN}^{-}}}{C_{\text{HCN}}} = Kc,$$

$$K_{\text{дисс}}(\text{HCN}) = Kc \cdot \frac{\gamma_{\text{H}_{3}\text{O}^{+}} \cdot \gamma_{\text{CN}^{-}}}{\gamma_{\text{HCN}}},$$

где Kc — концентрационная (кажущаяся) константа диссоциации, выражается только через C, не учитывает взаимодействие ионов в растворе, применяется для характеристики идеальных растворов (в частности, для слабых электролитов).

Величина $K_{\rm дисc}$ для слабых кислот зависит от температуры. Но, в отличии от K_W , с повышением температуры в интервале от 0 до 60 °C значение $K_{\rm диcc}$ изменяется всего лишь на 3–8 %.

В выражении

$$\frac{C_{\text{H}_3\text{O}^+} \cdot C_{\text{CN}^-}}{C_{\text{HCN}}} = Kc$$

обозначим

$$C_{\mathrm{H}_{3}\mathrm{O}^{+}} = C_{\mathrm{CN}^{-}} = C\alpha,$$

$$C_{\mathrm{HCN}} = C(1-\alpha).$$

В результате получим выражение закона разбавления Оствальда:

$$Kc = \frac{C\alpha \cdot C\alpha}{C(1-\alpha)} = \frac{C\alpha^2}{1-\alpha}$$
.

При $\alpha \ll 1$ знаменателем можно пренебречь:

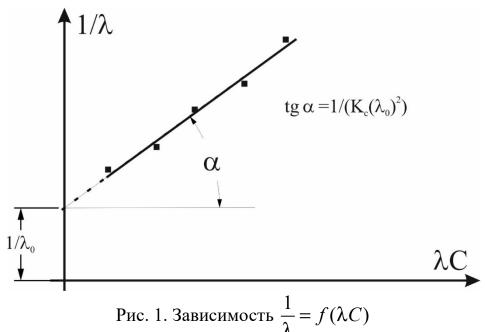
$$Kc = C\alpha^2$$
,

$$\alpha = \sqrt{\frac{Kc}{C}} .$$

Чем меньше концентрация слабого электролита, тем больше его степень диссоциации, причем при бесконечном разведении величина $\alpha \to 1$. Чем больше степень диссоциации α , тем выше Kc.

Выразим закон разведения Оствальда через молярную электропроводность (λ).

$$\alpha = \frac{\lambda}{\lambda_0},$$


$$Kc = C \frac{\lambda^2}{\left(\lambda_0^2\right) \cdot \left(1 - \frac{\lambda}{\lambda_0}\right)} = \frac{C\lambda^2}{\lambda_0(\lambda_0 - \lambda)},$$

$$Kc = \frac{C\lambda^2}{\lambda_0(\lambda_0 - \lambda)}.$$

Величины Kc и λ_0 можно найти графически (рис. 1), для чего необходимо выражение преобразовать в линейный вид

$$\frac{1}{\lambda} = \frac{1}{\lambda_0} + \frac{\lambda C}{Kc(\lambda_0)^2}.$$

Из графической зависимости $\frac{1}{\lambda} = f(\lambda C)$ определяем величины Kc и λ_0 .

Задачи

Используя приведенные ниже данные о свойствах водных растворов слабых электролитов (табл. 1) и растворов сильных электролитов (табл. 2), решить следующие задачи:

- 1. Построить графики зависимости удельной и эквивалентной электропроводности растворов слабых электролитов и растворов сильных электролитов от концентрации C и разведения V ($\kappa = f(C)$, $\kappa = f(V)$, $\lambda = f(C)$, $\lambda = f(V)$).
- 2. Проверить, подчиняются ли рассматриваемые растворы веществ закону разведения Оствальда.
- 3. Вычислить для рассматриваемых веществ по данным зависимости эквивалентной электропроводности от концентрации значение эквивалентной электропроводности при бесконечном разведении и сопоставить результат с табличными значениями.
- 4. Вычислить абсолютные скорости и числа переноса аниона и катиона в обоих растворах при бесконечном разведении.
- 5. Для электролита, раствор которого подчиняется закону разведения Оствальда, определить, при какой концентрации степень диссоциации электролита в растворе станет равной 0,01, и рН этого раствора.

Данные о подвижностях анионов и катионов при бесконечном разбавлении взять из справочника [1].

Удельное электрическое сопротивление (р, [Ом·м]) водных растворов слабых электролитов при различных концентрациях

			_	НО	55	,3	۲,	8,	0	33	1
			6	NH_4OH	2,55	10,3	14,5	25,8	100	143	251
			∞	$\mathrm{C}_6\mathrm{H}_5\mathrm{COOH}$	9,75	14,1	18,5	31,4	48,8	6,73	10,4
	$O(M \cdot M)$		L	$\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{OH}$	$7,46.10^{3}$	$10,\!80.10^3$	$14,50.10^3$	$23.5 \cdot 10^3$	$32,7.10^3$	$41,50.10^3$	$74,60.10^3$
	е сопротивление (р	Вариант	9	$(CH_3)_2AsOOH$	131	180	235	402	582	962	1310
	Удельное электрическое сопротивление (р, [Ом·м])	Удельное электрическо В В В В В В В В В В В В В В В В В В В	5	CH_3COOH	19,6	27,6	34,8	61,0	87,0	103	185
			4	НООЭН	90'9	8,91	10,3	18,2	6,52	35,8	68,5
			3	HOCI	927	1390	1810	3120	4560	2560	10 000
			7	$^{\xi}ONH$	4,32	2,7	5,7	13,4	20,4	8,92	52,7
			1	HCN	$3,10.10^3$	$4,37.10^3$	$5,84.10^3$	$10,1.10^3$	$14,3.10^3$	$18,3.10^3$	$31,9.10^3$
	Концентрация – электролита – С, моль/л			0,1	0,05	0,03	0,01	0,005	0,003	0,001	

Удельное электрическое сопротивление (р, [Ом·м]) водных растворов сильных электролитов при различных концентрациях

Таблица 2

Удельное электрическое сопротивление (р, [Ом·м])	Вариант	6	CH_3COOK	1,035	1,970	4,730	9,220	18,20	44,5	9,78
		8	CH ₃ COONa	1,37	2,60	6,18	12,0	23,4	57,0	113,0
		<i>L</i>	KBrO_3	0,982	1,780	4,240	8,250	16,3	40,0	79,20
		9	KCNS	0,832	1,60	3,81	7,46	14,50	36,0	71,4
		5	$NaBrO_3$	1,17	2,21	5,24	10,20	21,0	48,60	95,20
		4	HIO_3	0,360	0,645	1,455	2,78	5,310	13,20	26,0
		3	HNO_3	0,261	0,514	1,245	2,470	4,900	12,10	24,2
		7	IH	0,2542	0,500	1,220	2,430	4,820	12,10	23,80
		1	HC1	0,256	0,501	1,230	2,43	4,82	11,9	23,7
Концентрация электролита С, моль/л		0,1	0,05	0,02	0,01	0,005	0,002	0,001		

Электродные потенциалы

Примеры решения задач

Пример 1. Рассчитать стандартный электродный потенциал пары Cu^{2+}/Cu^{+} по данным справочника для пар Cu^{2+}/Cu и Cu^{+}/Cu .

Решение.

$$Cu^{2+} + 2e^{-} = Cu$$

$$\Delta G^0 = -nFE^0 = -2 \cdot (96 \ 485 \ \text{K}_{\text{Л}} \cdot \text{моль}^{-1}) \cdot (+0.337 \ \text{B}) = -65 \ 031 \ \text{Дж} \cdot \text{моль}^{-1}.$$

$$Cu^+ + e^- = Cu$$

$$\Delta G^0 = -nFE^0 = -1 \cdot (96 \ 485 \ \text{K}_{\text{Л}} \cdot \text{моль}^{-1}) \cdot (+0.521 \ \text{B}) = -50 \ 269 \ \text{Дж} \cdot \text{моль}^{-1}.$$

Вычитая, получаем

$$Cu^{2+} + e^{-} = Cu^{+}$$

 $\Delta G^0 = -nFE^0 = -3\cdot(96\ 485\ \mathrm{K}\text{л}\cdot\mathrm{моль}^{-1})\cdot E^0 = -14\ 762\ \mathrm{Дж}\cdot\mathrm{моль}^{-1},$ откуда $E^0 = +0,153\ \mathrm{B}.$

Пример 2. Составить схему гальванического элемента, в котором протекает реакция

$$Ag^{+} + Br^{-} = AgBr$$

Рассчитать стандартную ЭДС элемента при 25 °C, ΔG^0 , константу равновесия реакции и растворимость AgBr в воде.

Решение.

$$Ag|AgBr|Br^-|Ag^+|Ag$$

Левый электрод:	Правый электрод:
$AgBr + e^{-} = Ag + Br^{-}$	$Ag^+ + e^- = Ag$
$E^0 = 0,0732 \mathrm{B}$	$E^0 = 0,7792 \text{ B}$

Общая реакция: $Ag^+ + Br^- = AgBr$

$$E^0 = 0,7260 \text{ B}$$

$$\Delta G^0 = -nFE^0 = -(96~485~{\rm K}{\rm J\cdot MOJ}{\rm b}^{-1})(0,7260~{\rm B}) = -70,05~{\rm k}{\rm Дж\cdot MOJ}{\rm b}^{-1}$$

$$K = e^{\left(\frac{-\Delta G^0}{RT}\right)} = e^{\left(\frac{70050}{8,314\cdot298}\right)} = 1.9 \cdot 10^{12}$$

$$1/K = a(Ag^{+}) \cdot a(Br^{-}) = m(Ag^{+}) \cdot m(Br^{-}) \cdot \gamma_{\pm}^{2} = m^{2} \cdot \gamma_{\pm}^{2}$$

Допуская, что $\gamma_{\pm} = 1$, получаем $m = 7,31 \cdot 10^{-7}$ моль·кг⁻¹.

Пример 3. Значение ΔH реакции

$$Pb + Hg_2Cl_2 = PbCl_2 + 2Hg,$$

протекающей в гальваническом элементе, равно -94,2 кДж·моль⁻¹ при 298 К. ЭДС этого элемента возрастает на $1,45\cdot 10^{-4}$ В при повышении температуры на 1 К. Рассчитать ЭДС элемента и ΔS при 298 К.

Решение.

$$\Delta S = nF \left(\frac{\partial E}{\partial T} \right)_p = 2 \cdot 96 \ 485 \cdot 1,45 \cdot 10^{-4} = 28,0 \ \text{Дж/(моль·К)}$$

$$\Delta G = \Delta H - T \Delta S = -nFE$$

$$E = \frac{T\Delta S - \Delta H}{nF} = \frac{298 \cdot 28 - (-94200)}{2 \cdot 96485} = 0,314B$$

Ответ: $\Delta S = 28,0 \text{ Дж/(моль·К)}; E = 0,314 \text{ B}.$

Задачи

- 1. Рассчитать стандартный электродный потенциал пары Fe^{3+}/Fe по справочным данным таблицы «Стандартные электродные потенциалы при 25 °C» для пар Fe^{2+}/Fe и Fe^{3+}/Fe^{2+} .
- **2**. Рассчитать произведение растворимости и растворимость AgCl в воде при 25 °C по данным таблицы «Стандартные электродные потенциалы при 25 °C».
- **3.** Рассчитать произведение растворимости и растворимость Hg_2Cl_2 в воде при 2 °C по данным таблицы «Стандартные электродные потенциалы при 25 °C».
- **4**. Рассчитать константу равновесия реакции диспропорционирования:

$$2Cu^+ \rightarrow Cu^{2+} + Cu$$

при 25 °C.

5. Рассчитать константу равновесия реакции

$$ZnSO_4 + Cd \rightarrow CdSO_4 + Zn$$

при 25 °C по данным таблицы «Стандартные электродные потенциалы при 25 °C».

6. ЭДС элемента, в котором обратимо протекает реакция

$$\frac{1}{2} Hg_2 Cl_2 + Ag \rightarrow AgCl + Hg,$$

равна 0,456 В при 298 К и 0,439 В при 293 К. Рассчитать ΔG , ΔH и ΔS реакции.

7. Вычислить тепловой эффект реакции

$$Zn + 2AgCl \rightarrow ZnCl_2 + 2Ag$$
,

протекающей в гальваническом элементе при 273 K, если ЭДС элемента E=1,015 B и температурный коэффициент ЭДС = $-4,02\cdot10^{-4}$ B·K⁻¹.

8. В гальваническом элементе при температуре 298 К обратимо протекает реакция

$$Cd + 2AgCl \rightarrow CdCl_2 + 2Ag$$

Рассчитать изменение энтропии реакции, если стандартная ЭДС элемента $E^0 = 0,6753~\mathrm{B}$, а стандартные энтальпии образования CdCl₂ и AgCl равны $-389,7~\mathrm{u}$ $-126,9~\mathrm{кДж\cdot моль^{-1}}$ соответственно.

9. ЭДС элемента

при 25 °C равна 0,322 В. Чему равен рН раствора HC1?

10. Растворимость $Cu_3(PO_4)_2$ в воде при 25 °C равна 1,6·10⁻⁸ моль·кг⁻¹. Рассчитать ЭДС элемента

$$Pt \mid H_2 \mid HCl (pH = 0) \mid Cu_3(PO_4)_2$$
 (насыщ. p-p) | Cu при 25°C.

- **11.** Три гальванических элемента имеют стандартную ЭДС соответственно 0,01; 0,1 и 1,0 В при 25 °C. Рассчитать константы равновесия реакций, протекающих в этих элементах, если количество электронов для каждой реакции n=1.
 - 12. ЭДС элемента

в широком интервале температур описывается уравнением:

$$E^{0}(B) = 0.07131 - 4.99 \cdot 10^{-4} (T - 298) - 3.45 \cdot 10^{-6} (T - 298)^{2}$$
.

Рассчитать ΔG , ΔH и ΔS реакции, протекающей в элементе, при 25 °C.

13. Для измерения pH раствора можно применять хингидронный электрод. Хингидрон, $Q \cdot QH_2$, представляет собой комплекс хинона $(Q = C_6H_4O_2)$ и гидрохинона $(QH_2 = C_6H_4O_2H_2)$. Электродная полуреакция записывается как

$$Q + 2H^+ + 2e \rightarrow QH_2,$$

стандартный потенциал $E^0 = +0,6994\,\mathrm{B}$. Рассчитать pH раствора HCl, если элемент

$$Hg \mid Hg_2Cl_2 \mid HCl \mid Q \cdot QH_2 \mid Pt$$

имеет ЭДС +0,190 В.

14. В гальваническом элементе обратимо протекает реакция

$$CuSO_4 + Zn = ZnSO_4 + Cu$$

Рассчитать ΔH и ΔS реакции, если ЭДС элемента равна 1,960 В при 273 К и 1,961 В при 276 К.

15. В элементе Вестона протекает реакция

$$Cd + Hg_2SO_4 = Cd^{2+} + 2Hg + SO_4^{2-}$$
.

Рассчитать ЭДС этого элемента при 303 K, если ΔH и ΔS протекающей в нем реакции равны соответственно -198,8 кДж·моль $^{-1}$ и -7,8 Дж·моль $^{-1}$ ·K $^{-1}$.

16. *ΔН* реакции

$$Pb + 2AgCl = PbCl_2 + 2Ag$$
,

протекающей в гальваническом элементе, равно -105,1 кДж·моль-1. ЭДС этого элемента равна 0,4901 В при 298 К. Рассчитать ЭДС элемента при 293 К.

Электролиз. Законы Фарадея

Первый закон Фарадея

Масса вещества m, выделяемая на электроде электрическим током, прямо пропорциональна количеству электричества Q, прошедшему через электролит:

$$m = k \cdot Q = k \cdot I \cdot \tau$$
,

где I — сила тока, A; τ — время пропускания тока, c; k — электрохимический эквивалент вещества.

Второй закон Фарадея

Массы различных веществ, выделяемые одним и тем же количеством электричества, прямо пропорциональны их молярным массам эквивалентов (M_3):

$$m_1: m_2: m_3 = M_{21}: M_{22}: M_{23}$$

Для выделения 1 моль-экв вещества требуется пропустить через электролит количество электричества, равное числу Фарадея $F = 96~485~\mathrm{K}$ л. Математическим выражением второго закона Фарадея является формула:

$$k = \frac{M}{nF} = \frac{M_{9}}{F},$$

где M — молярная масса вещества; n — число электронов, принимающих участие в элементарном акте электродной реакции.

Формула объединенного закона Фарадея имеет вид

$$m = \frac{M \cdot I \cdot \tau}{n \cdot F} \, .$$

Данное выражение справедливо в том случае, если на электроде протекает только одна реакция. Если на поверхности электрода протекает два и более процесса, то в правую часть необходимо добавить множитель — выход по току (ВТ), который учитывает долю тока, затраченную на интересующий нас процесс:

$$m = BT \cdot \frac{M \cdot I \cdot \tau}{n \cdot F},$$

$$BT = \frac{m \cdot n \cdot F}{M \cdot I \cdot \tau} \cdot 100 \%.$$

На процесс электролиза существенно влияет плотность тока. Обычно плотность тока i выражают в $A/дм^2$:

$$i = \frac{I}{S}$$

где S — площадь поверхности электрода.

Примеры решения задач

Пример 1. Металлическую деталь с общей поверхностью 100 см^2 электролитически покрывают слоем никеля толщиной 0,3 мм. Катодный выход по току никеля равен 80 %. Какова продолжительность электролиза при силе тока 3 A? Плотность никеля равна 9 г/см^3 .

Решение.

Масса выделившегося никеля

$$m = 100 \cdot 0.03 \cdot 9 = 27 \text{ r.}$$

Поскольку

$$m = BT \cdot \frac{M \cdot I \cdot \tau}{n \cdot F},$$

$$\tau = \frac{m \cdot n \cdot F}{BT \cdot M \cdot I} = \frac{27 \cdot 2 \cdot 96 \cdot 485}{0.8 \cdot 58, 71 \cdot 3} = 36 \cdot 977 \text{ c } (\approx 10,3 \text{ ч}).$$

Пример 2. В процессе рафинирования меди при силе тока 50 А за 5 ч выделяется 281 г меди. Каков выход меди по току?

BT =
$$\frac{m \cdot n \cdot F}{M \cdot I \cdot \tau} \cdot 100 \%$$
,
BT = $\frac{281 \cdot 2 \cdot 96 \cdot 485}{64 \cdot 50 \cdot (5 \cdot 3600)} \cdot 100 \% = 94,14 \%$.

Пример 3. При электролизе водного раствора NaCl было получено 400 см³ раствора, содержащего 18,00 г NaOH. За то же время в медном кулонометре масса катода увеличилась на 20,20 г. Определить выход по току щелочи.

Решение.

Из второго закона Фарадея

$$\frac{m_{\text{NaOH}}}{m_{\text{Cu}}} = \frac{k_{\text{NaOH}}}{k_{\text{Cu}}},$$

$$k_{\text{NaOH}} = \frac{M_{\text{NaOH}}}{1F},$$

$$k_{\text{Cu}} = \frac{M_{\text{Cu}}}{2F},$$

$$\frac{k_{\text{NaOH}}}{k_{\text{Cu}}} = \frac{M_{\text{9NaOH}}}{M_{\text{9Cu}}},$$

$$m_{\text{Teop(NaOH)}} = \frac{m_{\text{Cu}} \cdot M_{\text{9NaOH}}}{M_{\text{9Cu}}} = \frac{20,20 \cdot 40,01}{31,77} = 25,44 \text{ r,}$$

$$BT(\text{NaOH}) = \frac{m_{\text{IIPAKT}(\text{NaOH})}}{m_{\text{Teop(NaOH)}}} \cdot 100 \% = \frac{18,00}{25,44} \cdot 100 = 70,75 \%.$$

Пример 4. При кулонометрическом титровании 25 см³ раствора бихромата калия электролитически генерируемыми в растворе ионами Fe^{2+} на восстановление ионов $\mathrm{Cr_2O_7^{2-}}$ понадобилось 20 мин при силе тока 0,25 А. Определить нормальность исследуемого раствора бихромата калия. Определяем количество электричества, прошедшего через раствор:

$$Q = I \cdot t = 0,25 \cdot 20 \cdot 60 = 300$$
 Кл,

что соответствует

$$\frac{300}{9,65\cdot10^4}$$
 = 0,0032 моль-экв.

Следовательно, для бихромата

$$C_{\rm H} = \frac{0,0032}{25} \cdot 1000 = 0,128$$
 моль-экв/л.

Задачи

- **1.** Ток величиной в 1,2 А проходит через раствор сульфата меди в течение 3 ч. Какова масса выделившейся меди?
- **2.** Сколько граммов серной кислоты образуется при электролизе раствора медного купороса в течение 3 ч 10 мин током 0,56 A?
- **3.** Вычислить электрохимический эквивалент цинка, если при электролизе раствора соли током 2,8 A за 5 мин 32 с выделилось 0,314 г цинка.
- **4.** Через раствор $FeCl_2$ пропускали ток в 3 A в течение 12 мин, а через раствор $FeCl_3$ ток в 4 A (то же время). В каком из растворов выделилось больше железа? Ответ мотивируйте.
- **5.** Через соединенные последовательно растворы $SnCl_2$ и $SnCl_4$ пропускали в течение 10 мин электрический ток в 3 А. Вычислить количества олова и хлора, выделившихся из каждого раствора в отдельности.
- **6.** Вычислить количество PbO₂, которое выделится на аноде при электролизе соли свинца в азотнокислом растворе током в 0,16 A в течение 45 мин. Какие реакции протекают на электродах?
- 7. Через раствор йодистого бария пропускают ток 18 мин силой в 5,2 А. Какие реакции протекают на электродах? Какие вещества и в каком количестве выделяются на электродах?
- **8.** Сколько времени надо пропускать ток через раствор соли серебра, чтобы покрыть с двух сторон пластинку размером (см²) 4×6 слоем серебра толщиной в 0,02 мм, если сила тока -0,6 A, а плотность серебра -10,5 г/см³?
- **9.** Сколько времени нужно пропускать ток силой 1 A, чтобы восстановить до двухвалентного все трехвалентное железо, содержащееся в 80 мл 0,1 M раствора?
- **10.** Сколько времени нужно пропускать ток в 4 A через раствор серебряной соли, чтобы покрыть предмет с поверхностью стороны в 90 см² слоем серебра толщиной 0,005 мм (плотность серебра 10.5 г/см^3)?
- **11.** Ток в 4,8 А выделяет из раствора платиновой соли 1,517 г платины в течение 10 мин 25 с. Вычислить химический эквивалент платины.
- **12.** Какой силы ток надо пропускать через 0,12 н раствор $Bi(NO_3)_3$, чтобы в течение 30 мин полностью выделить металл из 40 см^3 раствора?
- **13.** Через раствор соли серебра пропущен ток в течение 1 ч. При этом выделилось 0,4830 г серебра. Амперметр показывал 0,09 А. Какова относительная ошибка в его показаниях?
- **14.** При электролизе раствора медного купороса образовалось 6,35 г меди. Какой газ и в каком количестве (по объему) выделился на аноде,

если он был измерен при 25 °C над водой при давлении 99 980 H/m^2 ? Давление водяных паров при этой температуре равно 3172,6 H/m^2 . Сколько времени продолжался электролиз, если сила тока 0,2 A?

15. При кулонометрическом титровании 10 см^3 раствора перманганата калия электролитически генерируются в растворе ионы Fe^{2+} . На восстановление ионов MnO_4^- понадобилось 28 мин при силе тока 100 мA. Определить титр раствора KMnO_4 (г/см³).

Коррозия металлов и способы защиты от коррозии

Слово corrosio (коррозия) в переводе с латинского означает разъедание, разрушение. Коррозия — это самопроизвольный процесс разрушения металла в результате его взаимодействия с веществами окружающей среды на границе раздела фаз, приводящий к потере функциональных свойств изделия.

Причиной коррозии металлов является их термодинамическая неустойчивость в коррозийной среде. Мерой термодинамической неустойчивости служит изменение энергии Гиббса (ΔG), наблюдаемое при взаимодействии металла с веществами окружающей среды. С точки зрения термодинамики, коррозийный процесс возможен при $\Delta G < 0$.

Коррозионные процессы подразделяются на следующие виды:

- по механизму взаимодействия металла со средой;
- по виду коррозионной среды;
- по виду коррозионного разрушения.

По механизму взаимодействия окружающей среды с металлами коррозия делится на два основных типа: **химическая и электрохимическая коррозия**.

К **химической коррозии** относятся процессы, протекающие при непосредственном химическом взаимодействии металла с веществами среды и не сопровождающиеся появлением электрического тока, т.е. процесс взаимодействия материала детали с веществом происходит в один этап без разделения в пространстве и во времени. Типичный пример химической коррозии — это взаимодействие металла с кислородом

$$2Me + \frac{z}{2}O_2 \to Me_2O_z$$

или хлором

$$Me + \frac{z}{2}Cl_2 \rightarrow MeCl_z$$

где z — валентность металла.

К электрохимической коррозии относятся коррозионные процессы, протекающие в водных растворах электролитов, в расплавах солей, в щелочах и во влажном воздухе, так как поверхность детали покрыта тонкой пленкой воды толщиной в несколько микрон до температуры 80–100 °C.

Мерой термодинамической неустойчивости служит изменение энергии Гиббса, наблюдаемое при взаимодействии металла с электролитом:

$$\Delta G = -nF\Delta E^p$$
,

где n — число электронов, участвующих в электрохимическом процессе; F — число Фарадея, равное 96 485 Кл/моль; $\Delta E^p = (E_\kappa^p - E_a^p)$ — разность равновесных потенциалов катодной E_κ^p и анодной E_a^p реакций.

С точки зрения термодинамики, коррозийный процесс возможен лишь при условии, что $\Delta G < 0$, поэтому $\Delta E^p > 0$, следовательно $E^p_\kappa > E^p_a$. Это означает, что электрохимическая коррозия металла будет происходить, если в растворе присутствует окислитель, равновесный потенциал которого положительнее равновесного потенциала металла.

Разрушение металла происходит под действием возникающих гальванических пар. Механизм электрохимической коррозии, определяемый разностью потенциалов пассивных (катодных) и активных (анодных) участков, сводится к работе гальванического элемента, однако результат коррозионных разрушений может быть различен. В результате электрохимической коррозии окисление металла может приводить как к образованию нерастворимых продуктов (например, ржавчины), так и к переходу атомов металла в раствор в виде ионов.

В растворе электролита и при конденсации влаги из воздуха, на поверхности детали при наличии в нем примесей образуется короткозамкнутый гальванический элемент. Более активный металл посылает в раствор свои ионы, т.е. окисляется, а на менее активном металле идет процесс восстановления ионов водорода или молекул кислорода, которые всегда присутствуют в растворе, поступая туда из воздуха.

В случае коррозии детали, изготовленной из стали, с поверхности анодных участков в раствор переходят ионы железа:

$$Fe-2e^- \rightarrow Fe^{2+}$$

Освободившиеся электроны переходят с анодных участков к поверхности катода, где соединяются с имеющимися в растворе ионами водорода, выделяя газообразный водород:

$$2\text{H}^+ + 2e^- \rightarrow \text{H}_2$$

В качестве материала катода в данном случае выступают примеси других металлов или карбид железа. Последняя реакция облегчает протекание реакции окисления железа. В электрохимии данный случай коррозии называется процессом с водородной деполяризацией.

На катоде, помимо выделения водорода, могут протекать и другие реакции, например **кислородная деполяризация**:

$$2\text{H}_2\text{O} + \text{O}_2 + 4e^- \rightarrow 4\text{OH}^-$$

Эти процессы снижают поляризацию катода и увеличивают скорость коррозии.

Примеси, имеющие более положительный стандартный электродный потенциал, способствуют увеличению электрохимической коррозии. Если в железе имеются примеси с более отрицательным стандартным электродным потенциалом (цинк, алюминий), то анодом будут служить примеси, а катодом — железо. При этом примеси будут растворяться, защищая железо от коррозии.

Короткозамкнутые гальванические элементы могут возникать не только за счет примеси другого элемента, но и за счет разности потенциалов между участками различной механической обработки, структуры, состояния оксидной пленки на поверхности металла, различием состава раствора у отдельных участков его поверхности. Электрохимическая коррозия наблюдается и в таком случае, когда имеется контакт различных металлов. Так, если при изготовлении какой-либо детали из алюминия применены медные заклепки, то в таком случае они играют роль катода, а алюминий является анодом, который будет интенсивно разрушаться.

По виду коррозионной среды и условиям протекания различают несколько видов коррозии.

Газовая коррозия — это химическая коррозия металлов в газовой среде при минимальном содержании влаги (как правило, не более 0,1 %) или при высоких температурах. В химической и нефтехимической промышленности такой вид коррозии встречается часто. Например, при получении серной кислоты на стадии окисления диоксида серы, при синтезе аммиака, получении азотной кислоты и хлористого водорода, в процессах синтеза органических спиртов, крекинга нефти и т.д.

Атмосферная коррозия — это коррозия металлов в атмосфере воздуха или любого влажного газа.

Подземная коррозия – это коррозия металлов в почвах и грунтах.

Биокоррозия – это коррозия, протекающая под влиянием жизнедеятельности микроорганизмов.

Контактная коррозия — это вид коррозии, вызванный контактом металлов, имеющих разные стационарные потенциалы в данном электролите.

Радиационная коррозия — это коррозия, обусловленная действием радиоактивного излучения.

Коррозия внешним током и коррозия блуждающим током. В первом случае это коррозия металла, возникающая под воздействием тока от внешнего источника. Во втором случае — под воздействием блуждающего тока.

Коррозия под напряжением – коррозия, вызванная одновременным воздействием коррозионной среды и механических напряжений. Если это растягивающие напряжения, то может произойти растрескивание металла. Это очень опасный вид коррозии, особенно для конструкций, испытывающих механические нагрузки (оси, рессоры, автоклавы, паровые котлы, турбины и т.д.). Если металлические изделия подвергаются циклическим растягивающим напряжениям, то можно вызвать коррозионную усталость. Происходит понижение предела усталости металла. Такому виду коррозии подвержены рессоры автомобилей, канаты, валки прокатных станов.

Коррозионная кавитация – разрушение металла, обусловленное одновременным коррозионным и ударным воздействием внешней среды.

Фреттинг-коррозия — это коррозия, вызванная одновременно вибрацией и воздействием коррозионной среды. Устранить коррозию при трении или вибрации возможно правильным выбором конструкционного материала, снижением коэффициента трения, применением покрытий и т.д.

По характеру изменения поверхности металла или сплава различают несколько видов коррозионных разрушений.

Коррозия называется *сплошной*, если она охватывает всю поверхность металла. *Сплошная коррозия* может быть *равномерной*, если процесс протекает с одинаковой скоростью по всей поверхности металла, и *неравномерной*, когда скорость процесса неодинакова на различных участках поверхности. Равномерная коррозия наблюдается, например, при коррозии железных труб на воздухе.

При *избирательной коррозии* разрушается одна структурная составляющая или один компонент сплава. В качестве примеров можно привести графитизацию чугуна или обесцинкование латуней.

Местная (локальная) коррозия охватывает отдельные участки поверхности металла. Местная коррозия может быть выражена в виде отдельных пятен, не сильно углубленных в толщу металла; язв — разрушений, имеющих вид раковины, сильно углубленной в толщу металла, или точек (питтингов), глубоко проникающих в металл.

Первый вид наблюдается, например, при коррозии латуни в морской воде. Язвенная коррозия отмечена у сталей в грунте, а питтинговая — у аустенитной хромоникелевой стали в морской воде.

Подповерхностная коррозия начинается на поверхности, но затем распространяется в глубине металла. Продукты коррозии оказываются сосредоточенными в полостях металла. Этот вид коррозии вызывает вспучивание и расслоение металлических изделий.

Межкристаллитная коррозия характеризуется разрушением металла по границам зерен. Она особенно опасна тем, что внешний вид металла не меняется, но он быстро теряет прочность и пластичность и легко разрушается. Связано это с образованием между зернами рыхлых малопрочных продуктов коррозии. Этому виду разрушений особенно подвержены хромистые и хромоникелевые стали, никелевые и алюминиевые сплавы.

Щелевая коррозия вызывает разрушение металла под прокладками, в зазорах, резьбовых креплениях и т.д.

Показатели коррозии

Скорость коррозии может быть определена по изучению зависимости изменения какого-либо показателя процесса во времени. Наиболее употребительными показателями процесса коррозии являются: глубинный, изменение массы, объемный, механический и др.

 Γ лубинный показатель (K_{Π}) оценивает глубину коррозионного разрушения металла в единицу времени (например, мм/год). Возможно также измерение толщины образующейся на металле пленки продуктов коррозии в единицу времени.

Массовый показатель (K_m^{\pm}) характеризует изменение массы (m) образца металла в результате коррозии, отнесенное к единице поверхности металла S и к единице времени τ (например, $\Gamma/(M^2 \cdot \Psi)$):

$$K_m^{\pm} = \frac{m}{S \cdot \tau}$$
.

Этот показатель может быть отрицательным, если масса металла за время испытания τ после удаления продуктов коррозии уменьшилась. Он может быть и положительным, если масса образца за время испытаний увеличилась.

Если известен состав продуктов коррозии металла, то можно сделать пересчет положительного показателя изменения массы в отрицательный по формуле:

$$K_m^- = K_m^+ = \frac{n_{\text{ok}} \cdot A_{Me}}{n_{Me} \cdot A_{\text{ok}}},$$

где K_m^- и K_m^+ — соответственно отрицательный и положительный массовый показатель коррозии; A_{Me} — атомная масса металла; $A_{\rm ok}$ — атомная масса окислителя; n_{Me} — валентность металла; $n_{\rm ok}$ — валентность окислителя.

В случае равномерной коррозии металла можно сделать пересчет от отрицательного показателя изменения массы $(K_m^- \ \Gamma/(\mathrm{M}^2 \cdot \mathrm{u}))$ к глубинному показателю K_Π (мм/год):

$$K_{\Pi} = \frac{K_m^- \cdot 8,76}{\rho_{Me}},$$

где ρ_{Me} – плотность металла, г/см³.

Объемный показатель коррозии (K_V) указывает объем поглощенного или выделившегося в процессе коррозии металла газа ΔV , приведенного к нормальным условиям, и отнесенный к единице поверхности металла и к единице времени (например, см³/(см²·ч)):

$$K_V = \frac{\Delta V}{S\tau}$$
.

Используется также *механический показатель коррозии* $K_{\text{мех}}$. Он характеризует изменение какого-либо механического свойства металла за время коррозионного процесса, выраженное в процентах.

Примеры решения задач

Пример 1. Запишите процессы, протекающие при коррозии чугуна в кислой, нейтральной и щелочной средах. Определите катод и анод. Как меняется скорость процесса коррозии при изменении рН среды?

Железо на поверхности будет играть роль анода, а углеродные включения — катодов. При контакте этих участков с раствором электролита образуются гальванические элементы, приводящие к разрушению железа.

В кислой среде (раствор соляной кислоты)

A)
$$\operatorname{Fe} - 2e^{-} \to \operatorname{Fe}^{2+} \left| 1 \right|$$

K) $2\operatorname{H}^{+} + 2e^{-} \to \operatorname{H}_{2} \left| 1 \right|$

суммарный процесс

$$Fe + 2H^+ \rightarrow Fe^{2+} + H_2$$

 $Fe + 2HCl \rightarrow FeCl_2 + H_2$

В условиях кислородосодержащей атмосферы двухвалентное железо окисляется до трехвалентного:

$$4\text{FeCl}_2 + \text{O}_2 + 4\text{HCl} \rightarrow 4\text{FeCl}_3 + 2\text{H}_2\text{O}$$

В нейтральной и щелочной средах

A)
$$Fe - 2e^{-} \rightarrow Fe^{2+}$$
 2
K) $2H_{2}O + O_{2} + 4e^{-} \rightarrow 4OH^{-}$ 1

суммарный процесс

$$2\text{Fe} + 2\text{H}_2\text{O} + \text{O}_2 \rightarrow 2\text{Fe}^{2+} + 4\text{OH}^-$$

 $2\text{Fe} + 2\text{H}_2\text{O} + \text{O}_2 \rightarrow 2\text{Fe}(\text{OH})_2$

В условиях кислородосодержащей атмосферы двухвалентное железо окисляется до трехвалентного:

$$4Fe(OH)_2 + O_2 + 2H_2O \rightarrow 4Fe(OH)_3$$

С увеличением рН скорость коррозии чугуна будет снижаться, т.е. наибольшая скорость коррозии чугуна будет наблюдаться в кислой среде.

Пример 2. Запишите процессы, протекающие при коррозии оцинкованного железа в кислой, нейтральной и щелочной средах. Определите катод и анод. Как меняется скорость процесса коррозии при изменении рН среды?

После нарушения целостности цинкового покрытия при контакте коррозионной среды с металлической поверхностью цинк (как более активный металл) будет играть роль анода, а железо — катода.

В кислой среде

A)
$$\operatorname{Zn} - 2e^{-} \to \operatorname{Zn}^{2+} \begin{vmatrix} 1 \\ K \end{pmatrix} 2H^{+} + 2e^{-} \to H_{2} \begin{vmatrix} 1 \\ 1 \end{vmatrix}$$

суммарный процесс

$$Zn + 2H^+ \rightarrow Zn^{2+} + H_2$$

 $Zn + 2HCl \rightarrow ZnCl_2 + H_2$

В нейтральной среде

A)
$$Zn - 2e^{-} \rightarrow Zn^{2+}$$
 | 2
K) $2H_2O + O_2 + 4e^{-} \rightarrow 4OH^{-}$ | 1

суммарный процесс

$$2Zn + 2H_2O + O_2 \rightarrow 2Zn^{2+} + 4OH^{-}$$

 $2Zn + 2H_2O + O_2 \rightarrow 2Zn(OH)_2$

В щелочной среде

A)
$$Zn - 2e^{-} \rightarrow Zn^{2+}$$
 | 2
K) $2H_{2}O + O_{2} + 4e^{-} \rightarrow 4OH^{-}$ | 1

суммарный процесс

$$2Zn + 2H_2O + O_2 + 4OH^- \rightarrow 2Zn(OH)_4^{2-}$$

 $2Zn + 2H_2O + O_2 + 4NaOH \rightarrow 2Na_2 [Zn(OH)_4]$

Зависимость скорости коррозии от pH раствора имеет экстремум: в кислой среде коррозия протекает с высокой скоростью, в нейтральной среде скорость значительно снижается, а в щелочной среде — вновь возрастает, что объясняется растворением малорастворимого гидроксида цинка до тетрагидроксоцинката натрия.

Пример 3. Рассчитайте массовый показатель коррозии алюминия в серной кислоте, если убыль массы алюминиевой пластины размером $70 \times 20 \times 1$ мм составила после восьми суток испытания 0.0348 г.

$$K_m^- = \frac{m}{S \cdot \tau},$$

$$S = 2(70 \cdot 20) + 2(70 \cdot 0.1) + 2(20 \cdot 0.1) = 2818 \text{ mm}^2 (2.818 \cdot 10^{-3} \text{ m}^2),$$

$$K_m^- = \frac{0.0348}{2.818 \cdot 10^{-3} \cdot 8 \cdot 24} = 0.064 \text{ r/(m}^2 \cdot \text{ч}).$$

Пример 4. Рассчитайте массовый показатель коррозии кадмия. Образец кадмия плотностью $\rho = 8,65 \text{ г/см}^3$, размером $45 \times 25 \times 1 \text{ мм}$ после 150 часов окисления и снятия продуктов коррозии весил 10,0031 г.

По геометрическим размерам образца рассчитаем его площадь и объем:

$$S = 2(45 \cdot 25) + 2(45 \cdot 1) + 2(25 \cdot 1) = 2390 \text{ mm}^2 (23.9 \text{ cm}^2),$$
$$V = 4.5 \cdot 2.5 \cdot 0.1 = 1.125 \text{ cm}^3.$$

Найдем исходную массу образца и разность масс:

$$m = \rho V = 8,65 \cdot 1,125 = 9,7313 \text{ }\Gamma,$$

 $\Delta m = 10,0031 - 9,7313 = 0,2718 \text{ }\Gamma.$

Рассчитаем массовый положительный показатель коррозии:

$$K_m^+ = \frac{0.2718}{2.39 \cdot 10^{-3} \cdot 150} = 0.758 \text{ г/(м}^2 \cdot \text{ч}).$$

Пример 5. Оценить защитные свойства оксидной пленки (Fe₂O₃) на железе. Оксидная пленка может быть сплошной (согласно фактору Пиллинга — Бедвордса) только при условии, что молекулярный объем оксида $V_{\rm okc}$ больше молекулярного объема металла V_{Me} . С другой стороны, если $\frac{V_{\rm okc}}{V_{Me}} > 2,5$, пленка не может обладать высокими защитными свойствами вследствие значительных внутренних напряжений.

Ориентировочно считают, что достаточно хорошими защитными свойствами могут обладать оксидные пленки на металлах при соблюдении условия:

$$\alpha = \frac{V_{\text{okc}}}{V_{Me}} = \frac{M \cdot \rho_{Me}}{\rho_{\text{okc}} \cdot n \cdot A},$$

где α — фактор Пиллинга — Бедвордса; $V_{\rm okc}$, V_{Me} — молекулярные объемы оксида и металла; M — молекулярная масса оксида; A — атомная масса металла; n — число атомов металла в молекуле оксида; ρ_{Me} , $\rho_{\rm okc}$ — плотности металла и оксида.

$$\alpha = \frac{160 \,\Gamma/\text{моль} \cdot 7,85 \,\Gamma/\text{см}^3}{5,24 \,\Gamma/\text{см}^3 \cdot 2 \cdot 56 \,\Gamma/\text{моль}} = 2,14.$$

Так как 1 < 2,14 < 2,5 оксидная пленка обладает хорошими защитными свойствами.

Пример 6. В кислой среде (pH = 3) контактируют медь и кобальт. Рассчитать ЭДС и энергию Гиббса образовавшегося гальванического элемента в указанных условиях.

В указанных условиях коррозия должна протекать с водородной деполяризацией. При рН = 3 потенциал водородного электрода составит:

$$\phi_{_{\rm BOJI}} = -0,059 pH = -0,059 \cdot 3 = -0,177~{\rm B}.$$

Из справочника находим стандартные электрохимические потенциалы контактирующих металлов:

$$\phi_{\text{Co}^{2+}/\text{Co}} = -0.250 \,\text{B};$$

 $\phi_{\text{Cu}^{2+}/\text{Cu}} = 0.337 \,\text{B}.$

Таким образом, кобальт — анод, а на поверхности меди идет процесс восстановления ионов водорода (водородная деполяризация).

ЭДС =
$$\Delta E = \varphi_{\kappa} - \varphi_{a} = -0.177 - (-0.250) = 0.073$$
 В.
 $\Delta G = n \cdot F \cdot \Delta E = 2 \cdot 96485 \cdot 0.073 = 14087$ Дж/моль.

Пример 7. Во влажной нейтральной атмосфере контактируют магний и кобальт. Рассчитать ЭДС и энергию Гиббса образовавшегося гальванического элемента в указанных условиях.

В данных условиях коррозия будет протекать с кислородной деполяризацией. Потенциал кислородного электрода составит при рН = 7:

$$\phi_{\rm O_2/OH^-} = 0.82 \ \rm B.$$

Из справочника находим стандартные электрохимические потенциалы контактирующих металлов:

$$\phi_{\text{Co}^{2+}/\text{Co}} = -0.250 \,\text{B};$$

$$\phi_{\text{Mg}^{2+}/\text{Mg}} = -2.363 \,\text{B}.$$

Таким образом, магний — анод, а на поверхности кобальта идет кислородная деполяризация.

ЭДС =
$$\Delta E = \varphi_{\kappa} - \varphi_{a} = 0.82 - (-2.363) = 3.183 \text{ B}.$$

 $\Delta G = n \cdot F \cdot \Delta E = 2 \cdot 96485 \cdot 3.183 = 614224 \text{ Дж/моль}.$

Задачи

1. Оценить защитные свойства оксидной пленки на металле.

Вариант	Металл	Плотность, г/см ³	Оксид	Плотность, $\Gamma/\text{см}^3$
1, 12	Алюминий	2,7	Al_2O_3	3,8
2, 13	Кальций	1,54	CaO	3,35
3, 14	Хром	7,19	Cr_2O_3	5,2
4, 15	Медь	8,96	CuO	6,4
5, 16	Железо	7,85	Fe_3O_4	5,4
6, 17	Марганец	7,4	MnO	5,45
7, 18	Бериллий	1,85	BeO	3,03
8, 19	Молибден	10,2	MoO_3	4,6
9, 20	Свинец	11,34	PbO	9,5
10, 21	Вольфрам	19,3	WO_3	7,0
11, 22	Тантал	16,6	Ta ₂ O ₅	8,76

2. Написать уравнения электродных процессов и суммарное уравнение реакции в случае контакта металлов А и В, рассчитать ЭДС и энергию Гиббса образовавшегося гальванического элемента в указанных условиях. Стандартные потенциалы металлов взять в справочнике.

Вариант	Металл А	Металл В	Условия коррозии
1	Zn	Fe	В кислой среде, рН = 4
2	Fe	Sn	Во влажной нейтральной атмосфере
3	Al	Cu	В кислой среде, рН = 5
4	Sn	Zn	Во влажной нейтральной атмосфере
5	Mg	Pb	В кислой среде, рН = 6
6	Zn	Mg	Во влажной нейтральной атмосфере
7	Cu	Zn	В кислой среде, рН = 6
8	Cu	Fe	Во влажной нейтральной атмосфере
9	Ni	Fe	В кислой среде, рН = 4
10	Al	Zn	Во влажной нейтральной атмосфере
11	Sn	Al	В кислой среде, рН = 5
12	Fe	Mg	Во влажной нейтральной атмосфере
13	Zn	Pb	В кислой среде, рН = 3
14	Zn	Cu	Во влажной нейтральной атмосфере
15	Ni	Zn	В кислой среде, рН = 2
16	Pb	Fe	Во влажной нейтральной атмосфере
17	Sn	Ni	В кислой среде, рН = 4
18	Cu	Mg	Во влажной нейтральной атмосфере
19	Al	Fe	В кислой среде, рН = 6
20	Sn	Mg	Во влажной нейтральной атмосфере
21	Al	Pb	В кислой среде, рН = 5

Список литературы

- 1. Равдель А. А., Пономарева А. М. Краткий справочник физико-химических величин. 10-е изд. СПб. : Иван Федоров, 2003. 240 с.
- 2. Лурье Ю. Ю. Справочник по аналитической химии. 3-е изд., стер. М.: Химия, 1967. 390 с.
- 3. Введенский А. В., Бобринская Е. В., Грушевская С. Н., Калужина С. А. Сборник примеров и задач по электрохимии : учеб. пособие. СПб. : Лань, 2022. 208 с. URL: https://e.lanbook.com/book/212504 (дата обращения: 17.04.2022).
- 4. Ротинян А. Л., Тихонов К. И., Шошина И. А., Тимонов А. М. Теоретическая электрохимия : учеб. для образовательных учреждений высшего профессионального образования. 2-е изд., перераб. и доп. М. : Студент, 2013. 496 с.
- 5. Перелыгин Ю. П., Лось И. С., Киреев С. Ю. Коррозия и защита металлов от коррозии : учеб. пособие для студентов технических специальностей. 2-е изд., доп. Пенза : Изд-во ПГУ, 2015. 88 с.

СОДЕРЖАНИЕ

Введение	3
Электропроводность растворов электролитов	
Электропроводность растворов слабых электролитов	
Электродные потенциалы	
Электролиз. Законы Фарадея	
Коррозия металлов и способы защиты от коррозии	
Список литературы	

Учебное издание

Киреев Сергей Юрьевич, Киреева Светлана Николаевна

Основы электрохимических процессов. Сборник задач и упражнений

Редактор В. В. Устинская Технический редактор М. Б. Жучкова Компьютерная верстка М. Б. Жучковой Дизайн обложки А. Е. Журиной

Подписано в печать 27.04.2022. Формат $60 \times 84^1/_{16}$. Усл. печ. л. 2,09. Тираж 25. Заказ № 257.

Издательство ПГУ. 440026, Пенза, Красная, 40.

Тел.: (8412) 66-60-49, 66-67-77; e-mail: iic@pnzgu.ru